

Creating learning organisations and systems that are understandable

Collaboration for Life

Jorn Bettin SKA Colloquium, AUT, Auckland, 16 February 2018

Exponential change in communication

- 1,800,000 years: Cumulative cultural transmission, teaching, imitation, experimentation - 200,000 years : Spoken human languages — local communication of tacit knowledge
- 5,400 years : Written human languages communication across time, explicit knowledge
- 600 years : Printing press 1-to-many communication across space, scale
- 180 years : Electrical telegraph & telephone global peer-to-peer communication, on demand
- 15 years : Internet global 1-to-many communication, zero marginal cost, dirt cheap
- Now : Internet of things machine-to-machine communication, new technologies every month

2 million years of gene culture co-evolution

time

The atoms of the "language" of thought

- Shared attention (awareness that another animal is looking at the same thing)
- **Pointing** (based on having limbs)
- Mental representations (= models) of the things we interact with
- **Categories** (= mental models of groups of similar things)
- **Containment** and **connectors** (spatial relationships between things = graphs)
- **Operations** (mental models of patterns of movements and changes over time)
- **Simulations** (to predict events and arrive at decisions)

Human mental models have been around for much longer than human language. Here is a synopsis of the thinking tools that predate human language:

Achieving shared understanding

Prior to spoken or written language communication via shared attention and pointing was the was way of establishing shared understanding, and such shared understanding related to very down-to-earth representations. Pre-language humans communicated within a highly local context in space and time. The things being referenced were "close at hand". It was reasonable for people to assume that others understood what they referred to. The risks for misunderstandings were limited.

Spoken language entered our world as a serialisation format for communicating simple references to things within our local context. We started to reference abstract things, references to references, and experiences that occurred many years ago. The number of **misunderstandings** in communication **grew exponentially.** Since people could not visit the past of other people, this lead humans down the path of extensive **social delusion**, where they started to assume that they understood each other much better than they actually did. The seeds for storytelling had been sowed. The first human hive minds emerged.

Written language made things worse in terms of the scope of social delusion. People had opportunities to "read" large volumes of information out of context in space and time. People started importing many thousands of references to very unfamiliar abstractions into their mental models on top of their first hand experiences. The human tendency to believe in the validity of our imagination after hearing or reading a story allowed storytelling and **belief systems** to rise to new heights. A few people started scratching their heads about weird human behaviours and the beliefs that underpinned the observed behaviours.

Transdisciplinary projects

er

https://drive.google.com/file/d/0B6ocDmkEPI-8MFEITzRSN09UWHM/view

Transdisciplinary projects are shaped significantly by context, triggers, and rituals, and subconscious adherence to paradigms.

To minimise the risks of collaboration failures it is important to understand how do new paradigms or dogmas emerge.

Modern mathematics

At all times throughout human history a few people would have realised that human language has severe limitations in terms of ambiguity and precision.

Categories Arrow composition =

Given the limitations of human languages, it is perhaps not entirely surprising that modern foundations of mathematics take us back to core concepts that pre-date human language – to the atoms of the language of thought:

- a formal symbol system.
- readable symbol systems.

Model theory expresses the biological foundations of human mental models in

Denotational semantics is based on the simple observation that we can abstract human understandable symbol systems into corresponding machine

Category theory is a thinking tool for articulating large scale patterns and establishing semantic equivalences between different domains, it does not involve any concrete symbol systems. We perform such semantic calculations in our minds all the time, mostly subconsciously.

Transdisciplinarity is at the core of value creation

[from the mission of the Honda Research Institute]

Diverse knowledge is necessary to solve various problems in the world and to create value in the future, and overcome challenges that go beyond the framework of research in industry, government and academia.

Creating visual languages and interaction styles that are better than English or any other linear language

limits.

- Human scale computing can be understood as the elaboration of the role of cognitive characteristics of humans within ergonomics.
- Systems, models and technologies are only understandable as long as they do not generate cognitive loads that exceed human cognitive
- This observation can only be put to good use if human cognitive limits become a primary concern in the design of human institutions and technologies, in much the same way that human scale physical dimensions and characteristics have shaped the discipline of ergonomics.

Tapping into the visual processing capacity of the human brain

- The brain's capacity for processing visual data is around 20 times higher than the brain's capacity for processing audio data.
- Even with simple technologies such as whiteboards and markers it is possible to design and use highly expressive and unambiguous visual languages that are much easier for humans to parse and understand than information in a linear format (audio or text).
- **MODA+MODE** therefore makes extensive use of visual languages and provides guidance for developing further domain specific visual languages.

Developing better languages and interaction styles

- In an increasingly software and data intensive human world the objective of human scale computing is to
- improve communication and collaboration:
- 1. between humans,
- 2. between humans and software systems,
- 3. and between software systems.
- This objective is another way of stating the goal of developing a language that is better than all human languages reliant on linear syntax.

MODA + MODE backbone principles for creating learning organisations and understandable systems

26 principles that provide a meta paradigm to avoid getting entrapped in a paradigm

MODA + MODE thinking tools for interdisciplinary research, design, and engineering: https://coininco.files.wordpress.com/2017/08/moda-and-mode-lenses-and-principles.pdf

Creating a learning organisation / system

- The SECI model (socialisation, externalisation, combination, internalisation) is a useful conceptual tool for organising and structuring new service / product development, and for extending the concept of continuous improvement into the realm of digital business and knowledge-intensive processes
- MODA + MODE uses formal conceptual models to represent explicit knowledge
- Takeuchi, Nonaka, The New Product Development Game, <u>https://hbr.org/1986/01/the-new-new-product-</u> development-game, 1986
- Nonaka, Toyama, Hirata, Managing Flow: A Process Theory of the Knowledge-Based Firm, Palgrave Macmillan, 2008

The learning capability of a project team is significantly shaped by

- 1. the level of neurodiversity within the team
- 2. the way in which diversity is accommodated in the principles for collaboration

Improvements and innovation

All effective approaches for continuous improvement (such as Kaizen, Toyota Production System, Waigaya, ...) and innovation (Open Space, collaborative design, ...) share one common principle.

In order to successfully identify and implement opportunities for improvement and innovation the belief in the existence and relevance of social hierarchies must be suspended

Why is this the case? What does this tell us about society?

The effect of hierarchical structures on innovation

- 1. Any form of hierarchy indicates a dampened feedback loop.
- 2. Power is the privilege of not needing to learn.
- **3.** A hierarchical organisation is the antithesis of a learning organisation.

A simple advice process creates a learning organisation

Before making a major decision that affects others in the organisation

- complementary knowledge or expertise.
- proceed on the basis of the available evidence.
- leaving the organisation.

More information: Frederic Laloux, page 22 in *Reinventing Organisations* http://www.reinventingorganizations.com/

1. A person has to seek advice from at least one trusted colleague with potentially relevant or

2. Giving advice is optional. It is okay to admit lack of expertise. This enables the requestor to

3. Following advice is optional. The requestor may ignore advice if she/he believes that all things considered there is a better approach or solution. Not receiving advice in a timely manner is deemed equivalent to no relevant advice being available within the organisation. This allows everyone to balance available wisdom with first hand learning and risk taking.

4. A few simple prosocial design principles provide guidance for dealing with people who regularly ignore relevant advice (or consistently refuse to seek or give advice) and therefore regularly cause downstream problems for others as a result. Such situations are obvious for all involved. A persistent breakdown of collaboration either results in a significant change in behaviour once the downstream problems are recognised, or in the non-cooperative person

Prosocial core design principles

Applying evolutionary science to coordinate action, avoid disruptive behaviours among group members, and cultivate appropriate relationships with other groups in a multigroup ecosystem (the work of Elinor Ostrom, Michael Cox and David Sloan Wilson)

Core Design Principles:

- Strong group identity and understanding of purpose
- Fair distribution of costs and benefits 2.
- Fair and inclusive decision-making 3.
- **Fast and empathetic conflict resolution** 4.
- **Authority to self-govern** 5.
- **Appropriate relations with other groups** 6.
- Tracking agreed upon behaviours
- Graduated responses to transgressions 8.

A working advice process minimises the need for tracking

Fair and inclusive distribution of resources minimises the need for coercion

The MODA + MODE human lens and its invariant characteristics offer concrete guidance for designing visual domain specific languages (VDSLs) and for integrating VDSLs in a multi-agent and multi-perspective context.

Collaboration for Life

Viewpoints and perspectives

perspective

discipline B

Validation via instantiation (or "concretisation")

Observation: We need less **speculation** and much more validation via instantiation !

6 Questions to surface tacit knowledge about systems

- When and how often does a decision require revision? Events and frequency
- Who arrives at the decision? Agents
- Why is the decision made? Purpose (which agents benefit?)
- Where (or in which information artefact) is the decision made? Location
- What are the possible choices? Limits of understanding
- **How** is the decision made? **Heuristics**

Investigating decision making processes that occur when applying knowledge:

Thank you!

Nothing beats capturing the knowledge flow of leading domain experts to co-create organisations & systems that are understandable by future generations of humans & software tools.

Jorn Bettin jorn.bettin@s23m.com

The MODA + MODE backbone – principles 1 to 8

		motivations motivatio		motivations	motivations	motivations
#	MODA + MODE principle	critical self- reflection	human societies	human symbols	human artefacts	nature
1	Understand that minorities and outsiders are well positioned for uncovering attempts of deception	addressing corruption	honesty			
2	Give minorities and outsiders access to private means of communication	development of new theories	equality			
3	Operate transparent governance	access to evidence	trust			
4	Adapt the cognitive load generated by technology to human cognitive limits	understandability	ease of communication, happiness	simplicity	usability	
5	Recognise neurological differences as authentic and valuable sources of innovative potential	discovery of externalities	resilience, happiness			resilience
6	Value metrics from the physical and biological world more than human opinions	minimise human bias	minimise cultural bias			
7	Value local perspectives more than widely-held popular beliefs	learning	collaboration between groups, happiness			
8	Value the strength of shared beliefs and corresponding evidence more than the number of shared beliefs	trust, happiness	trust, happiness			

The MODA + MODE backbone – principles 9 to 20

		motivations	motivations	motivations	motivations	motivations
#	MODA + MODE principle	critical self- reflection	human societies	human symbols	human artefacts	nature
9	Use information quality logic to minimise ambiguity		shared understanding, precision	quantification of knowledge		
10	Use probabilistic reasoning to acknowledge uncertainty		honesty, risk assessment	quantification of risk	quality management	
11	Conduct commonality and variability analysis		collaboration, simplicity, agility	simplicity	usability	
12	Formalise the results of commonality and variability analysis		shared understanding, resilience	sharing, automation	automation	
13	Develop visual domain specific languages to describe familiar domains in unambiguous terms		shared understanding, precision	simplicity, understandability	quality of design, manufacturing, recycling	
14	Understand that all information is dependent on perspective and viewpoint		diversity		usability, fitness for purpose	
15	Understand that a multitude of perspectives generates new insights		learning, resilience		innovation	
16	Validate shared understanding by sharing of models and corresponding instances		shared understanding, evidence		quality of design, manufacturing, recycling	
17	Understand that power gradients stand in the way of transformation		courage, transformation		reduction of externalities	
18	Aim for optimal conflict in a supportive and trusting team environment		agility, learning		quality of design, manufacturing, recycling	
19	Use agile experiments when venturing into unfamiliar domains to learn from mistakes		experiments, learning		quality of design, manufacturing, recycling	
20	Conduct an adequate number of experiments in different contexts to minimise risk before global application of major changes		caution		minimisation of externalities	

The MODA + MODE backbone – principles 21 to 26

		motivations	motivations	motivations	motivations	motivations	2
#	MODA + MODE principle	critical self- reflection	human societies	human symbols	human artefacts	nature	WERK T
21	Understand that collaboration occurs to the extent that there is shared understanding		shared expectations		design of value cycles	evolution of ecosystems	1
22	Recognise paradoxes and disagreements as the essence of continuous improvement		evolution		continuous improvement of design, manufacturing, recycling	evolution	
23	Practice everyday improvement, everybody improvement, everywhere improvement		continuous parallel evolution		continuous improvement of design, manufacturing, recycling	continuous parallel evolution	
24	Engage in niche construction		diversity, resilience, happiness		resilience in design, manufacturing, recycling	biodiversity, resilience	
25	Use feedback loops to create learning systems		learning systems		speed of innovation	codes, cell chemistry, recursion, neural networks	
26	Use modular decentralised design to promote reuse without compromising resilience		simplicity, resilience		resilience in design, manufacturing, recycling	cells, organs, organisms, species, ecosystems	

A culture may have further bones, but one or more missing vertebrae severely compromise capability

Typical use cases in industry, academia, and government

loops between different levels of scale:

- Development of collaboration platforms that improve the resilience and performance of economic ecosystems.
- Development of technology platforms that harness deep domain expertise to streamline the development of **new products**.
- Improvements in quality, reliability, and productivity of specific teams or technological systems.
- Integrating the knowledge of multiple domain experts in a crossdisciplinary context to co-create innovative solution designs.
- Translating tacit knowledge into **explicit knowledge** that does not decay over time.

The MODA + MODE approach has a fractal characteristic that enables it to operate at all levels of scale, with explicit support for feedback

CIC Conference on **Interdisciplinary Innovation** and **Collaboration**

play, learn, observe, question, innovate

Challenges that Go Beyond the Established Framework of Research in Industry, Government and Academia

Scientists, Engineers, Entrepreneurs, Artists & Mathematicians

CIIC brings together academic researchers and practitioners every 3 months to tackle wicked problems that don't have an obvious solution.

https://ciic.s23m.com/about/

AUT – Auckland University of Technology

MODA + MODE is being integrated into the curriculum on entrepreneurial strategies, creative technologies, and methodologies for trans-disciplinary research and collaboration

