
Notes on MDSD Workshop, OOPSLA'04

9/5/2005 Page 1 of 2

Notes about the OOPSLA'04 Workshop on
Best Practices for Model Driven Software Development

Ghica van Emde Boas
Bronstee.com, the Netherlands
emdeboas@bronstee.com

ABSTRACT
At the previous workshop (OOPSLA'04) on "Best
Practices for Model Driven Software Development", we
had a plenary discussion at the end of the session, where
the attendee's raised a number of issues concerning Model
Driven Software Development (MDSD). This short
document presents a selection of these, with some
discussion. The purpose of this paper is to record these
points and to have a yardstick against which we can
measure progress of the MDSD technology and adoption
in development projects.

Keywords
Model Driven Application development, Roundtrip
Engineering, 3 GL, Generative techniques, Java,
UML, XML, XMI.

1.1 Introduction

A major objective of each years OOPSLA workshop
on the topic of Model Driven Software
Development is to have an open discussion about
the state-of-the-art of the technology itself and the
best ways of applying the technology in real-life
situations.

At past-years workshop the discussion themes
centered around the question of how feasible it is to
apply MDSD in industrial development projects and
what the problems are to do so.

1.2 Is MDSD Ready for Primetime?

The first question to ask is whether MDSD is mature
enough to apply in real projects. During the
discussion, the following inhibiting points were
raised:

• Tool maturity

• NIH syndrome / many "small" approaches.

• Integration

• Good examples

• Is there a killer application?

• Large upfront effort

MDSD cannot be applied without extensive tool
support. To-date it has not been possible to develop
tools that are general enough to be useful in a large
variety of domains and on most popular platforms.

There are a number of open-source and academic
projects underway to improve the situation. These
tend to lack on the integration issue. There are also
several proprietary approaches that may do better on
integration, however, this is difficult to verify
because they are not open.

1.3 What is the MDSD killer application?

Many new technologies became popular because
there was some kind of application that would be
significantly easier or faster using the technology.
Someone remarked that the killer application would
kill somebody and this is not desirable. Here are
some points that resulted:

• MDSD is very successful for embedded
systems.

• Generation of DB schema, UI etc. is effective
using MDSD.

• MDSD is useful if repetition is involved.

• MDSD shields against rapid platform evolution.

Notes on MDSD Workshop, OOPSLA'04

9/5/2005 Page 2 of 2

• The killer app = the app that kills somebody.

From this list it is clear that the areas of application
for MDSD are still scattered and patchy. Lack of
integration of tools, as raised in the previous section,
prevents taking an integrated development approach.

1.4 Model Roundtrip-Engineering

The usefulness and feasibility of roundtrip-
engineering was a hotly debated issue. A majority
believed that roundtrip-engineering is not useful.
Forward and backward engineering both have a
purpose, but tooling is critical.

• MDSD is about forward engineering mostly

• Backward engineering is useful for:

o Capturing legacy code into a model

o Exploring the solution space

o Multiple horizontal model aspects

o Analysis feedback

• Compare going from Assembler to 3 GL

o Grace period when using both.

o Model to 3GL gap is much wider

o Semantics of a model may be fuzzy.

1.5 MDSD and Open Source

The problems of dealing with open-source do not
seem to be different for MDSD than for other
development.

• Interoperability is more important than open
source

• How to do mixed mode development

• Standards

• Licensing issues

Licensing deserves special attention though. Just as
with a compiler, the compiler may be open source,
but the source compiled with it, may be proprietary.

In MDSD, there can be many mixes of models, hand
crafted-source, pieces of framework, model
transformations, each of which could have a
different kind of license.

1.6 Open Questions

Here follows a list of miscellaneous subjects that
were raised.

• Dynamic models with aspects: Does the
dynamic structure impact code generation?

• Behavioral transformation has hardly been
addressed. How important is meaning
preservation and how do we ensure it?

• What are the essential properties of domains
that enable success?

• Commonalities between transformation
approaches?

• Testing? The JUnit for model transformation?

• Model IDE's?

• Debugging of models and transformed models?

1.7 Conclusion

While we were still talking about questions like: "is
MDSD ready for industrial use", and "how can we
find good examples to prove our cause" a year ago,
it seems a bit early to talk about best practices,
because practice is scattered.

It would be nice to go over the same questions again
now, a year later, and see how much progress is
made.

Another consideration to be made is an assessment
of how much the world has changed. Do we still
envisage application development using MDSD in
the same way as we did a year ago? What is the
relationship now to the use of DSL's (Domain
Specific Languages) and Software Factories?
�

� Photo's by Peter van Emde Boas

