
Template Programming for Model-Driven Code Generation

Ghica van Emde Boas Page 1 of 17 10/7/2004

Template Programming for Model-Driven Code Generation

Author: Ghica van Emde Boas
e-mail: emdeboas@bronstee.com

Contents
Template Programming for Model-Driven Code Generation 1

Contents .. 1
Abstract.. 1
Introduction .. 2

Background.. 2
Model-Driven Software development .. 2

Model-Driven, Generative Development ... 3
The Example.. 3

The Meta-model... 3
The Application .. 4

Implementation of the Meta-Model into a Modeling Tool .. 5
Calling Velocity to Start Code Generation ... 6
Calling JET to Start Code Generation ... 7

Entering the Application Model Data ... 7
Template Languages... 9

What is a Template Language?... 9
Requirements for a Template Language for Model-Driven Code Generation 10
Velocity .. 10
JET... 12

Implementing the Example using EMF.. 13
Velocity Templates for EMF .. 13

Template Programming ... 13
Template Utility Class .. 13
File Writing... 14
Conditional Template Structures ... 14
Naming .. 14
Database Mapping... 15
Cross-Cutting Concerns .. 15
Preservation of Manual Code .. 15

Related Work ... 16
Acknowledgement ... 16
Notes and References... 16

Abstract
The purpose of this paper is to describe the state of my (not “the”) art of template programming.

Template programming for model-driven code generation needs to be placed in a context,
therefore we describe a small model-driven generative software development project.

We show how to implement a simple meta-model into a modeling tool and how to define an
application model using this tool. Then we show how templates can be developed to generate
meaningful code for the application. We look at the two most popular template languages:
Velocity and JET. In the spirit of contributing best pratices, we describe at the end of this paper
some issues we have encountered in practice while developing code generation templates.

Template Programming for Model-Driven Code Generation

Ghica van Emde Boas Page 2 of 17 10/7/2004

Introduction
For the Generative Model Transformer (GMT)1 project we are developing a prototype that
should show the development process of a typical Model-Driven Software Development project in
a practical setting.

Here we are describing a simplified version of this prototype, using FUUT-je2. We have also
implemented this prototype using EMF3, the Eclipse Modeling Facility. The principles are very
similar and we will make some remarks on the use of EMF at the end of the paper.

Background
Many template languages are either proprietary or the result of some ad-hoc implementation
project. Providing well-defined syntax and semantics for the type of language we describe here,
has not been done as far as we know. This could be an interesting research project.

The closest we can think of as a fomal definition for template languages is the definition of XSLT
(Extensible Stylesheet Language for Transformations)4. XSLT is too verbose to be an effective
language for model-driven code generation, but for preforming XML transformations it has been
proven to be very popular. An early attempt to define a model driven template language as well
defined XML, the built-in the template language of FUUT-je, can be found in5.

The two most popular template languages in the Java environment, JET and Velocity, owe their
power to their resemblance to form-letters. The template is as close as possible to the output of
Java source code, HTML or text.

Other methods to generate source code include using rules, writing programs to write programs,
and using transfomations such as XSLT. We have seen both a rule based code generator and a
complex-program based code generator for the very large IBM SanFrancisco Java framework
(now succeeded by the various Websphere Components frameworks). Both approaches resulted
in overly complex and difficult to use pieces of software. We believe this is caused by designing
software with a complex model structure in mind instead of the flat, sequential structure of a Java
program that can easily be shown in a template.

Note that we are talking here about model-to-code or flat text generation, not model-model
transformation. In this area, graph rewriting, rules etc. may be more effective. Related subjects,
such as QVT6 are therefore outside the scope of this paper.

Model-Driven Software development
The reasons for doing Model-Driven Software Development or doing development in the MDA
style can be found at our http://www.mdsd.info site, or at the MDA site of the OMG:
http://www.omg.org/mda. Here we concern ourselves with the technicalities of building modeling
tools and how to interact with templates that should provide us with better and more easy to use
code generation facilities than currently available.

Programming in today’s mainstream programming languages such as Java is theoretically still
possible using a notepad editor and command line operations for compiling and executing code.
In practice, most programmers will use a combination of programming IDE’s, wizards and code
generation tools to make his/her development more productive. The next step in abstraction,
using model-driven techniques, is not widespread yet.

Why would you do dull and repetitive work when you could be innovative and produce better code
at the same time by using the model-driven tools and methods that are currently available?
Effective model-driven development cannot be done however, without some amount of custom
template programming to provide generated code in the style, using the standards, and for the
enveronment or platform of your company or organisation.

Template Programming for Model-Driven Code Generation

Ghica van Emde Boas Page 3 of 17 10/7/2004

Template programming is still an art in its infancy, the template languages are not mature either.
Still, we hope to show that you do not need a 20 person project to be able to benefit from model-
driven code generation techniques and that you can do useful template programming with
minimal effort and maximal result.

Model-Driven, Generative Development
According to the methodology put forward by the Jorn Bettin at MDSD.info7, the development
process for building an application using model-driven and generative techniques, will roughly
unfold in the following steps:

1. Develop a meta-model for the environment where the application will run8.
2. Develop a modeling tool from this meta-model.
3. Develop a model of the application.
4. Develop code generation templates to generate an application from the model in the context

of the meta-model.
5. Generate the code!
6. Add manual code at encapsulated spots. For the time being, this will remain necessary.
7. Iterate.

Step 7 is an important step in this process. A continuous involvement of domain experts,
architects and technical experts is needed to make model-driven development an agile process
that can compete with any other agile method in productivity and efficiency.

As you can see, you need to develop two applications instead of one. The first application is a
modeling tool that can be used to develop the application model. Over time it is expected that we
will have tools to generate these modeling tools and/or that ready-built tools for many domains
will become available.

The Example

The Meta-model
For our experiment we are using an extremely simple meta-model. Its purpose is to allow us to
generate Java code from an application model. Fig 1. shows what the meta-model looks like.

We accept criticism for this meta-model. It is too simple for a real life situation, and it could be
optimized. For example, useful attributes like visibility are missing and we could put the name
attribute that each class seems to have in a common super-class.

This simple model serves its purpose well enough to explain our example without adding too
much complexity and therefore we think it is useful. The model could be easily expanded into a
usable model for Java code generation..

Template Programming for Model-Driven Code Generation

Ghica van Emde Boas Page 4 of 17 10/7/2004

Fig. 1 – Very simple meta-model for the Java language.

The Application
As an example application, we chose the ubiquitous GuestBook. Here we only show how to
generate some POJO’s (Plain Old Java Objects)9 that could be used as part of such an
application, in a real setting you would probably like to implement this as a web-application, of
which these POJO’s could be part.

The model for the GuestBook application is shown in figure 2.

Fig. 2 – The GuestBook model in UML

As a side note we should mention that actually we would like the GuestBook model to be
independent of the meta-model we just defined, because we would like to be able to also
implement an application with the same functionality in other environments, PHP or .net for
example. In the original GMT philosophy, there would be two models in some abstract meta-
modeling language (MOF? ECore? UML?),10 one for the platform and one for the application. The
two would be combined using a mapping into a platform dependent model (PSM) as the Y-shape
picture in figure 3 (taken from the GMT documentation) suggests.

cd SimpleMeta

Class

+ name: String

Package
{root}

+ name:

Attribute

+ name: String
+ type: String

Operation

+ name: String
+ returnType: String
+ specification: String

Relation

+ name: String
+ type: String

*

source

1

*

target

1

*

1

*

1

*

1

cd GuestBook

GuestBook
{root}

+ owner: String

GuestEntry

+ name: String
+ email: String
+ text: String

entry

Template Programming for Model-Driven Code Generation

Ghica van Emde Boas Page 5 of 17 10/7/2004

Fig 3. - The basic pattern for model transformations

Our technology is not good enough yet to do model merging in practice, therefore we are
performing the step of mapping the application model to the meta-model implicitly and manually.

Implementation of the Meta-Model into a Modeling Tool
After the meta-model is defined, we need to implement a tool that allows the user to define
models for an application in the context of the meta-model. As described, in our example the
meta-model is the simple Java model as shown in figure 1.

Fig. 4 – the FUUT-je model for the Simple Java meta-model

First we must define the meta-model as a model in FUUT-je. You can see it in figure 4. It looks
the same as in figure 1, with some extra attributes and methods. The extra attributes, jetButton
and velocityButton in the Package class specify, as their names suggest, buttons the user can
press on the generated GUI to start the code generation. Because we would like to contrast the

Template Programming for Model-Driven Code Generation

Ghica van Emde Boas Page 6 of 17 10/7/2004

two template languages, JET and Velocity, there are two buttons. The context attribute is needed
to keep the Velocity context information.

If you need help developing this model using FUUT-je, look at the FUUT-je tutorial at the GMT
site, http://www.eclipse.org/gmt. The code for the example will also be available here.

We can generate code from the Simple Java meta-model-model using the SwingSet set of FUUT-
je templates. This will produce a Java Swing application with a ready built GUI that we can use to
define application models.

At this stage it is not so important to look into the details of the application generation in FUUT-je.
To summarize, FUUT-je has its own template language, used for the SwingSet, that we will not
describe here. It is also possible to use Velocity with FUUT-je. There exist a set of Velocity
templates intended to generate PHP code from FUUT-je models.

It is important however to look back at the section Model-Driven, Generative Development, and
see that we have completed step 1 and 2.

The result from the code generation step and some tuning is a modeling tool that we can use to
perform step 3 of our development process: Develop a model of the application. See figures 5 for
screenshots of the modeling tool. One of the windows not show has buttons to start the code
generation.

Before we describe how the application data is entered into the modeling tool, we will complete
the tool itself by adding code generation facilities. The development of actual templates will be
done after the development of the application model, as suggested in our stepwise development
process. In practice these will be parallel activities of course.

Calling Velocity to Start Code Generation
Setting up the model tool we just produced for code generation using Velocity templates is very
simple. We need to place the Velocity jar in the classpath and we need a few lines of code to
initialize the Velocity engine (not shown here). Before calling the generation engine, the Velocity
context is filled with some data. The context is essentially a hashmap that can be referenced in a
template.

 public void genVelocity() {
 System.out.println("gen Velocity button pressed!");
 Vector classVec = this.getClasss();
 this.initVelocity(); // initialize the velocity template engine
 FtVelocityUtil vUtil = new FtVelocityUtil();
 for (int i=0;i<classVec.size();i++) {
 ClassData data = (ClassData)classVec.elementAt(i);
 attContext.put("ft", vUtil);
 attContext.put("package", data.getParentPackage().getName());
 attContext.put("newDate", new Date());
 attContext.put("class", data);
 System.out.println("=== Velocity generated class === : " + data.getName() + "\n");
 String result = genIt("vtemplates/gendemo.vm");
 System.out.println(result);
 System.out.println("=== end of Velocity class === : " + data.getName() + "\n");
 }
 }

The genVelocity() method is called as action after pressing the “Generate with Velocity” button.
The genIt() method basically contains

 Velocity.mergeTemplate(vmName, "UTF-8", attContext, w);

Template Programming for Model-Driven Code Generation

Ghica van Emde Boas Page 7 of 17 10/7/2004

surrounded by a try-catch block to catch exceptions.

There are three things to note about calling the Velocity engine:
1. The name of the template is an argument to the mergeTemplate() method. It is easy to

modify the shown code in such a way that the name of the template can be chosen
dynamically at run-time.

2. The template is just a text file that is interpreted at runtime. You can configure Velocity to
leave the template loaded, as would be useful at deployment of Velocity as a web-service
generating HTML. For development purposes, it is useful to keep the templates unloaded,
because it allows you to change the template and re-run the code generation without re-
starting the generation tool. This is a very important productivity enhancer while developing
and debugging templates.

3. The Velocity engine integrates easily within any Java environment, within Eclipse or outside.

Calling JET to Start Code Generation
Including the JET engine into the modeling tool is quite a bit more involved. JET is part of EMF,
therefore it is necessary to install the EMF plugins into Eclipse before you can use JET. Maybe it
is theoretically possible to run a modeling tool using JET outside of Eclipse, it is certainly not
practical. To set-up your Eclipse project for using JET, a number of mouse-juggling steps is
required, see the JET tutorial11 for advice.

In the modeling-tool, after the set-up is done, calling the JET engine is easy:

 public void genJET() {
 System.out.println("gen JET button pressed!");
 com.bronstee.demo.JavaDemoTemplate generateJava = new
com.bronstee.demo.JavaDemoTemplate();
 Vector classVec = this.getClasss();

 for (int i=0;i<classVec.size();i++) {
 ClassData data = (ClassData)classVec.elementAt(i);
 System.out.println("=== JET generated class === : " + data.getName() + "\n");
 String result = generateJava.generate(data);
 System.out.println(result);
 System.out.println("=== end of JET class === : " + data.getName() + "\n");
 }
 }

The genJET() method is called after pressing the “Generate with JET” button in the modeling
application. There are several things to note here:

1. With JET you do not call the engine with the name of the template, but with the name of the

Java class generated from it. This makes it much more difficult to determine the template to
be used dynamically at run time, it would need reflective techniques to do so.

2. Changing the template results in changing a Java class, and therefore the modeling tool
needs to be restarted before the modified template can be used. This is a serious drawback
for development productivity.

3. JET only integrates with Eclipse. This is a serious drawback for easy deployment of tools
using JET.

Entering the Application Model Data
After some tuning of the GUI, the resulting application from generating code for the meta-model
as defined in FUUT-je, looks as in figure 6. We can use the application editor to enter the model
information for the GuestBook application model.

Template Programming for Model-Driven Code Generation

Ghica van Emde Boas Page 8 of 17 10/7/2004

Fig 5. – The Simple Java meta-model editor

Of course it would have been much better and provide more user productivity features if we
would have been able to generate a graphical editor which would allow us to enter the application
model information, similar to an UML editor as shown in figure 2. Unfortunately we do not have
the right toolset for this yet. Coding a graphical interface manually is outside the scope of this
paper and is also not foreseen for the GMT prototype for which this work is a “prototype”.

Difficult as it may be, we have succeeded in entering the model information using the generated
modeling tool editor. The tool has a facility to serialize the model data entered to an XML format.
This will be the way to save and restore application models. For our GuestBook example we will
get the following XML:

��������	
��
��������
����
��������������

����������
 ��
�������������
������
� ��

��

 ��
�������	
���
��
������
�!�"	����

 ��
�������	
��
����
������
 ��#$%����	
��#$%����

 ���!�"	����
�&##	�'"#���

 ��
�����������
������
 ��#$%���
������#$%����

 ���&##	�'"#���
 ��� ��

��
� ��

��

Template Programming for Model-Driven Code Generation

Ghica van Emde Boas Page 9 of 17 10/7/2004

 ��
�������	
��
����
������
����	��#��

 ��
�������	
���
��
������
 ��#$%�����	
���
��#$%����

 �����	��#��
��&##	�'"#���

 ��
����������
������
 ��#$%���
������#$%����

 ���&##	�'"#���
��&##	�'"#���

 ��
�����������
������
 ��#$%���
������#$%����

 ���&##	�'"#���
��&##	�'"#���

 ��
����
��
��
������
 ��#$%���
������#$%����

 ���&##	�'"#���
 ��� ��

��

 ������������

As you can see, thhe XML structure is not XMI, but very straightforward. Notice that there is no
�(���#��
��tag as you might expect. Instead the relationship names �!�"	��� and ���	��#��
are used. This is a choice made for the FUUT-je implementation to make the generic parsing and
un-marshalling of the XML into Java objects much easier.

Of course you could use any XML editor instead, to enter the model information, and then just
use the generated modeling tool to open the XML file and generate the Java code.

Template Languages
In the previous sections we have developed our example GuestBook application model according
to MDSD methodology. It is now time to look at the template languages we could use for code
generation of the application and develop some actual templates as suggested in step 4 of our
MDSD development process.

What is a Template Language?
Templates are as old as form letters. Any time you receive printed mail similar to this:

��������	����
�
� ����������
�����	���� �
���� �

�
there will be a template like this:

�������	�� ���
�
� ����������
�����	���� �
���� �

There will also be a program that keeps <<name>> = ‘John Doe’ expressions. At runtime all
<<name>> occurrences are then replaced by ‘John Doe’.

The popularity of template languages specifically designed to generate HTML is increasing at the
same pace the use of the internet in dynamic ways is increasing. Examples of such languages
are JSP and PHP. The same principles are now increaingly used to generate other text than
HTML, such as Java code, XML configuration files, etc.

Template Programming for Model-Driven Code Generation

Ghica van Emde Boas Page 10 of 17 10/7/2004

Two popular languages for code generation are JET that resembles JSP and Velocity that is
more like PHP.

Requirements for a Template Language for Model-Driven Code
Generation
Certainly the usual requirements for tlanguages in general apply: ease of use and run time
performance. Above all, it should be easy to see in the template what the generated output will
look like.

In addition, a template language that is suitable for model driven code generation should be
aware of the structure of the meta model for a model to be able to easily navigate through the
model.

There has been a discussion in the eclipse.tools.emf newsgroup at news.eclipse.org about JET
versus Velocity as code generation template languages (Ed Willink pointed me to it)12. The
implication seems to be that Velocity is more productive and that JET is more powerful. We are
showing some templates and code for both, so you can decide for yourself.

Velocity
Velocity13 is an Apache project. In the introduction it is said: “Velocity is a Java-based template
engine. It permits anyone to use the simple yet powerful template language to reference objects
defined in Java code.”

An Eclipse plugin to edit Velocity templates can be found at:
http://sourceforge.net/projects/veloedit/.

The template language is indeed a very simple, but complete language:

• it has #set(), #if(), #elseif(), #else() and #foreach() constructs.
• A variable is anything that starts with a ‘$’.
• Variables are replaced with their values at generation time.

The premier quality of Velocity is its ability to navigate through Java structures. You can pass a
list of Java objects and invoke methods on these objects. For example, if you had passed a
Person object as $person to a Velocity template, you can get its name as follows:

������ �����	����� �� ���
�

� ����������
�����	���� �
���� �

In the case of getters and setters you can also use a shorthand: $person.Name instead of
$person.getName().

For our GuestBook application, or more precise, for our modeling tool, we developed a simple
template that can be used to generate Java skeleton code from the application model. Not just
GuestBooks, but Java code for any model defined in the modeling tool.

This is the Velocity template:
/*
 * Created on $newDate
 * generated by a FUUT-je application using Velocity templates
 */

package $package;

public class $class.Name {

Template Programming for Model-Driven Code Generation

Ghica van Emde Boas Page 11 of 17 10/7/2004

#foreach($att in $class.Attributes)
 protected $att.Type ${att.Name};
#end

#foreach($att in $class.Attributes)
 /**
 * @return Returns the $att.Name
 */
 #set($uName = "${ft.capFirst($att.Name)}")
 public String get${uName}() {
 return $att.Name;
 }
 /**
 * @param $att.Name The $att.Name to set.
 */
 public void set${uName}(String ${att.Name}) {
 this.${att.Name} = $att.Name;
 }

#end
}

Note about the Velocity language that it is untyped. This allows developers to write templates
knowing not much about Java structures except its structure. No type casting etc. is necessary.
Still, knowledge about the Java object that are passed is needed. For commonly used meta-
models it may be desirable to encapsulate the meta-model structure as much as possible by
developing utility classes.

When we execute the code shown in “Calling Velocity to Start Code Generation” code will be
generated for a GuestBook class and a GuestEntry class. The output for the GuestBook class is:

/*
 * Created on Sun Aug 29 14:55:23 CEST 2004
 * generated by a FUUT-je application using Velocity templates
 */

package example;

public class GuestBook {

 protected String owner;

 /**
 * @return Returns the owner
 */
 public String getOwner() {
 return owner;
 }
 /**
 * @param owner The owner to set.
 */
 public void setOwner(String owner) {
 this.owner = owner;
 }

}

The template code shown here is about as powerful as the best wizards that generate code from
models, with the exeption of what EMF provides. With a little more effort it is possible to write

Template Programming for Model-Driven Code Generation

Ghica van Emde Boas Page 12 of 17 10/7/2004

templates that do much more and that can make every developer using these MDSD techniques
very productive.

JET
The JET language resembles JSP very closely.

A JET editor plugin for Eclipse can be found at: http://sourceforge.net/projects/jet-editor.

Within the <% … %> tags any Java code can be used, as for JSP. This makes JET more
powerful as a template language than Velocity. It makes it also easier to create a mess in your
templates. For our demo template that is not the case �, in fact it looks very similar to the
Velocity template:

<%@ jet package="com.bronstee.demo" imports="java.util.*
com.bronstee.simplemeta.* org.eclipse.gmt.fuut.common.*"
class="JavaDemoTemplate" %>

/*
 * Created on <%=new Date()%>
 * generated by a FUUT-je application using JET templates
 */
<% ClassData cdata = (ClassData) argument;
 String className = cdata.getName();
 Vector atts = cdata.getAttributes();
 String packageName = cdata.getParentPackage().getName();
%>
package <%=packageName%>;

public class <%=className%> {

 <%
 for (Iterator i = atts.iterator(); i.hasNext();) {
 AttributeData elem = (AttributeData)i.next();
 String name = elem.getName();
 String type = elem.getType();
 %>
 public <%=type%> <%=name%>;
 <% } %>

 <%
 for (Iterator i = atts.iterator(); i.hasNext();) {
 AttributeData elem = (AttributeData)i.next();
 String name = elem.getName();
 String uName = FtUtil.capFirst(name,'u');
 %>

 /**
 * @return Returns the <%=name%>.
 */
 public String get<%=uName%>() {
 return <%=name%>;
 }
 /**
 * @param <%=name%> The <%=name%> to set.
 */
 public void set<%=uName%>(String <%=name%>) {

Template Programming for Model-Driven Code Generation

Ghica van Emde Boas Page 13 of 17 10/7/2004

 this.<%=name%> = <%=name%>;
 }
 <% } %>
}

Note about the JET language that it is Java and therefore typed. It seems that writing JET
templates requires intimate knowledge of the implementation of the underlying metamodel. This
may be a drawback for developing user-friendly modeling tools that offer template faciliets based
on JET.

The output for the GuestBook class is exactly the same as the output produced using the
Velocity template and therefore it is not shown here.

Implementing the Example using EMF
EMF does not have a graphical front-end, except for the Omondo14 plugin that is not yet available
for Eclipse version 3 at the time of writing. The possibilities to import a model into EMF are to use
either a Rational Rose15 model, or an XML schema or annotated Java.

Implementation in EMF proceeds as follows:
• Define the matamodel, similar to the model in fig. 1, in Rose. We should also be able to use

the Enterprise Architect model shown in fig. 1, exported to XSD.
• Create an EMF projects for the metamodel, and import the rose model. See the EMF16

tutorial for information on how to do this.
• Generate the model code, the edit and the editor code.
• Create the guestbook model using the EMF generated editor for the simple tool model.
• Create Velocity templates.
• Implement a wrapper package that can load a meta-model instance, for example the

guestbook model, and then calls the Velocity interpreter on a set of templates.

Using EMF seems quite a bit more involved than what is needed to expand a generated FUUT-je
application as described above. We are still struggling with all the mouse juggling we have to do
and we are tryingto describe this in a “cookbook” that can be used with GMT.

The true advantage of using EMF will be that the result is better integrated with Eclipse and that
more tools will be able to interface with the EMF XMI formats.

Velocity Templates for EMF
It turns out that the templates to be used for for generating code from a specific metamodel are
exactly the same for both the FUUT-je and EMF implementation of the metamodels, except for a
truly minor difference in naming the access methods of collections that hold relationships
between meta-classes.

Template Programming
In the example above we only scratched at the surface of the complexity of template
programming. In this section we would like to add some notes of things you need to be aware of
in practical template programming.

Template Utility Class
It will almost always be necessary to write a class that performs utility functions. In theory you
would not need it for JET templates, in practice your templates will become unreadable very
quickly.

Template Programming for Model-Driven Code Generation

Ghica van Emde Boas Page 14 of 17 10/7/2004

A simple example that we encountered in our GuestBook application is the generation of getters
and setters, where the naming convention suggests that get/set is followed by the attribute name
with the first character in uppercase.

A certain need is also validation of names. In our Java models, the class, attribute, and method
names should be valid Java identifiers and maybe also adhere to company standards, such as:
attribute and method names start with lowercase, class names start with uppercase.

File Writing
In our simple example, the generated code was displayed as standard output. The template
engines return a string as result of their work. In practice it is needed to write the generated code
into a file. The knowledge which file should be written belongs naturally to the template. In the
FUUT-je template language there is a special construct to open files of the right name, for
Velocity and JET we have to use a trick to know the right filename. The trick is to define a field in
the utility class that will be set by template programming. After the result string is returned by the
generation engine, the calling code can read that field and write the complete result string to the
specified file.

Conditional Template Structures
In our example we assumed that all attributes would have public visibility. The attributes are
declared protected17 with public getters and setters. In case your meta-model allows for protected
or private visibility, the template that generates the attribute declarations and the getter/setter
methods needs to check for each case and generate code accordingly. For these 3 visibilities, the
template code becomes three times as long and it will be much less easy to see what the
resulting code is.

Initial values or constraints for attributes can also result in a large amount of conditional template
programming. Depending whether an initial value is supplied or not, you may need to declare a
default value to avoid null pointer exceptions or compile errors.

Sometimes you can avoid conditional template programming by performing a validation step in
the modeling tool before calling the template engine. The tradeoff is however that by doing this
validation step, the modeling-tool becomes related to the templates and the mapping rules it
encodes, which may be undesirable.

Naming
It is very tempting to map model class names directly to Java class names and similar for
attributes. In practice this leads to undesirable restrictions on the naming in the model. For
example, it would not be allowed to have a class Class or something named package or any
other reserved word in Java (if that is the target of your code generation). In addition, one model
class may map to many generated classes or items. For example, in a J2EE EJB environment,
you would maybe generate a Home and a Bean and an Impl class and maybe a database table
for every model class. One option is to expand your model to include all these classes according
to specific patterns. This will explode the size of your model however, and if the transformation is
not reversible, you will be stuck with un-synchronized, un-maintainable models.

For FUUT-je we have chosen to use suffixes for classes and prefixes for attributes. For example,
using the FUUT-je Swingset, for the model class GuestEntry, the classes GuestEntryData,
GuestEntryPanel, GuestEntryTable and GuestEntryDelegate are generated. Attribute names are
prefixed with att.

Another issue is the naming of attributes which hold relationships. In general the attribute should
be named after the name of the relationship, it may default to the name of the class (with first
letter put in lowercase) when there is only one relation between two classes. If a relation is a one

Template Programming for Model-Driven Code Generation

Ghica van Emde Boas Page 15 of 17 10/7/2004

to many relation, we may need to find out the plural of a name. This can default to name+s in
English, but of course that is not always right. Countrys and Adresss looks ugly in code (although
it does not influence the right execution of it).

Naming of XML tags deserves special mention. Tag names for XML are much more permissive
than for Java. In practice I have encountered things such as <address-book>, to be mapped to a
class AddressBook etc. If possible you need to make the modeling tool user friendly enough that
this mapping will occur automatically. FUUT-je does this for you, unless you specify deliberately
something different. It is not possible to solve this completely with template programming. The
templates have to be aware of the mapping rules however.

Database Mapping
A special case of naming issues is the mapping class- and attribute names in a model to table-
and column names in a relational database. The database may pose length restrictions, the
database administrators may want to enforce naming conventions, you may have to map to an
existing database, the mapping may not be one-one, you have to do special mappings for
inheritance structures, .etc The algorithms needed may become quite involved. It may also be
necessary to build your meta-model in such a way that it allows for specifying specific mappings
of names.

Mapping the types of the attributes to the corresponding column types form the next challenge.
For example, a Java attribute may have the type String. In a database there are many types of
string: fixed length, variable lengths, long and very long. For each attribute you need to be able to
specify how it will map, by giving it a specific stereotype, or by providing an attribute in the meta-
model where you can enter the exact mapping. Another notorious problem is dates. The choice
here are DATE, TIMESTAMP, or an INT corresponding with a Unix timestamp. Not all databases
support the same types.

Cross-Cutting Concerns
In FUUT-je it is possible to specify a group name for an attribute. Attributes with the same group
name are placed in the same tab-panel with the group name as its label. This is an example of a
cross-cutting concern, where it may be needed to cycle through all model items several times
before you can start generating code. Modeling this in another way than as an attribute for the
model class Attribute would make the meta-model more complex. As a consequence the
template that generates the tab-panels has become more complex. Tradeoffs are not always
easy to make here.

Another cross-cutting concern is building a parameter list. For example you could provide a class
constructor with a set of arguments that provide values for each (or a subset) of its attributes.
Because you cannot place a ‘,’ after the last argument, building these lists are a true pain. The
best solution is to provide special methods in the utility class to do this.

Preservation of Manual Code
When modifications are made to the model, it may become necessary to regenerate the code. If
you made changes to the code, the may be lost if you do not take special precaution. The first
code generator I used (for the IBM San Francisco framework) forced you to cut and paste
modifications back into generated code. Moreover, the code was such, that it would not even
compile right after regeneration. This became very painful very quickly. Later code generators
and generation wizards all use the same technique of allowing you modifiable code blocks that
will not be touched by code generation. During template processing it is not possible or it would
be very difficult to look into the previously generated file.

Template Programming for Model-Driven Code Generation

Ghica van Emde Boas Page 16 of 17 10/7/2004

One solution is that the modeling/generation tool reads the code and disassembles it before the
new generation is started. A disadvantage of this approach is that the generated files and the
model need to be managed together and can get out-of-sync.

Another solution is (this is the approach taken by FUUT-je) to keep the modified code in the
model itself. A special merge process is needed to load the modified code. It is much easier now
to manage the code and structural changes, renames of classes, etc. are easier to perform.

A note on reverse engineering of code: Many claim that it is a drawback of generative
programming that round-trip engineering is either impossible or prohibitively complex. We think
however that this is an advantage. In the same way that you never look at the assembly code
(unless you are a compiler writer) and try to make C or C++ or Java out of it, it is not useful to re-
engineer Java code into a model. Which does not mean that the generated code should not be as
readable as possible.

Related Work
Many efforts are undertaken currently to create tools that fit into the Model Driven Architecture
(MDA)18 paradigm or into the broader methodology of Model-Driven Software Development
(MDSD)7. To take a comparative look at those, even considering only the open source ones,
would take an article in itself.

So far, I did not see a comporative study to look at template languages intended for code
generation, or a study that would consider the syntax and semantics of such a language
scientifically.

Acknowledgement
Mark Kofman (kofman@kth.se) has pioneered the EMF version of the meta-model and has
helped with the code generation extension.

Notes and References

1 See www.eclipse.org/gmt for a description and status of the project.

2 See http://www.eclipse.org/gmt/ and look for information on FUUT-je.

3 See http://www.eclipse.org/emf

4 http://www.w3.org/TR/xslt

5 Ghica van Emde Boas, SF Business Component Prototyper, an Experiment in Architecture for
Application Development Tools", the IBM Systems Journal, May 2000. The complete article can
be found at: http://www.research.ibm.com/journal/sj/392/vanemdeboas.html.

6 OMG/RFP/QVT MOF 2.0 Query/Views/Transformations RFP, OMG document AD/2002-04-10.
Available from www.omg.org.

7 See www.mdsd.info for more information.

8 In the white paper at http://www.softmetaware.com/mdsd-and-isad.pdf, this meta-model is
referred to as a Domain Specific Language (DSL). We will not use it here. The term DSL is
misleading because domain is usually associated with the user domain, i.e. insurance for
insurance applications and order management for order management applications etc. We are
talking here about technical domains such as J2EE or a business component framework.

Template Programming for Model-Driven Code Generation

Ghica van Emde Boas Page 17 of 17 10/7/2004

9 See http://c2.com/cgi/wiki?PlainOldJavaObject

10 MOF is the meta-modeling language for UML. ECore is the meta-modeling language for EMF.

11 See http://eclipse.org/articles/Article-JET/jet_tutorial1.html

12 A summary of the discussion can be found at news.eclipse.org/eclipse.tools.emf, in an append
by Frank Budinsky, on 7/20/2004. See also http://jakarta.apache.org/velocity/casestudy1.html.
This link is a JSP to Velocity comparison.

13 Velocity can be found at http://jakarta.apache.org/velocity/index.html.

14 http://www.omondo.com

15 http://www-306.ibm.com/software/awdtools/developer/java/

16 http://www.eclipse.org/emf/

17 Private attributes are considered harmful by the author of this article. We have been hit many
times not being able to override a method properly because the super method used a private
attribute.

18 http://www.omg.org/mda

